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ABSTRACT

The standard paraxial ray equation method [1] for the design of electrodes
for an electrostatically focused gun is extended to include relativistic
effects and the effects of the beam's azimuthal megnetic field. Solutions for
parallel and converging beams are obtained and the predicted currents are

compared against those measured on the High Brightness Test Stand [2].
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INTRODUCTION

A well-known technique for designing électrostaticalIy focused guns makes
use of the paraxial ray equation [1,3]. Essentially, a differential equation
of motion is derived which gives the behavior of the beam envelope in terms of
the second derivative of the potential with respect to the longitudinal
coordinate. The desired behavior of the beam envelope in the longitudinal
direction is prescribed and the equation is used to solve for the potential
distribution consistent with that envelope specification. The solution 1is
then used to set the potentials of the accelerating electrodes and their
spacings. This technique 1s extended in the present work to include effects

due to the beam’s azimuthal magnetic field and relativity.

METHOD OF ANALYSIS

We consider an azimuthally symmetric system and consider only static
fields. Additionally, we neglect any azimuthal component of velocity of the

beam electrons. Thus, we may write a complete set of equations which govern

the motion of the electrons
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Equations (1) and (4) yleld
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while Eq. (2) yields Be = ZIr/cr where Ir' the enclosed current at radius r,

is given by

r

Ir -_£ Zir'dr'_Jz (r")

and Jz =pv, = pCBz. the z-component of the current density. Setting

dt = dz/vz = dz/cﬂz the radial component of Eq. (3) can be written as

mc’p, 3 (8,7 2) = - e(E-B,B,) - 8

We now introduce the paraxial apprnximntibn which requires that ar << Bz
so that B ~ l!z. If in addition, strz << 1 then yzz ('l-ﬁzz)'1 and Eq. (7)

may be written as
2, 3_ a, . - -
mcB o7 (Y8 5 e(E. - BBy) . (8)
We now make the further simplifying assumption that the beam profile is
flat, 1.e. p(r) = constant. We also approximate B(r) and azq./az2 by their
values at r = 0. With these assumptions Er may be evaluated from Eq. (6) as

£ - ZI'I“JZ +I§:
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where the prime denotes 3/2z. We may also find Ir and hence Be' Using these
results, Eq. (5), and the fact that By = /72 ~ 1 we may rewrite Eq. (8) as
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where I, = mc3/e =~ 17 KA.

PARALLEL BEAM

We now consider the case of a parallel beam where 3ar/3z = 0. Equation (9)

then immediately simplifies to
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If L 1s the anode-cathode gap distance then we may define a new independent

variable ¢ as z/L. Then we may write the above equation as

YI_—“— =0
YJ72-1

where a = -4¢JZL2/I° and where a prime now denotes differentation with respect

to . A first integral of this equation is
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If we now impose boundary conditions appropriate for space charge limited

flow, namely v(0) = 1,y'(0) = 0 and y(1) = Y, e have

Y
[ S S (10)

-1
1 sec 'y



where a 1s given by Eq. (10) evaluated at £ = 1 with y = Yor YVS. ¢
is plotted in Fig. 1. With a determined Jz is tmmediately §1ven as

Ig
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EXPONENTIALLY CONVERGING BEAM

1f r(s,z) = r‘,(s)e"'z where s labels the radius at the cathode then we

Thus, J_ = PV, = -ard_. Again,

-aZ
have v, = dr/dt = -uroe dz/dt = —arv z

2 r
we take p and B to be their on-axis values. Thus, J_ = J_(z) and Vel=0

gives
al : alJ
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with the solution Jz = Joe

Equation (9) now becomes
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If we define { = az and A = 413°/I°¢2 we have finally that
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Again, we choose boundary conditions appropriate to space charge 1imited flow:

¥(0) =1, v'(0) = 0 and y(co) =Y, where a prime now denotes differentation



with respect to ¢. Equation (12) along with its three boundary conditions
is an eigenvalue problem for the parameter A. A value of A is assumed and
Eq. (12) 4s integrated from¢ =0 to ¢ = ‘o' If the boundary condition
Y=Y, is not satisfied at ¢ = co then a new value of A 1s chosen and the
entire procedure repeated until the unique value of A\ is found that permits

the satisfaction of all three boundary conditions. Jo is then found from

the relation

1 azl

0
3 = “as . (13)

A plot of the solution to Eq. (12) 1s given in Fig. 2.

DESIGN EXAMPLES

Two examples corresponding to different designs of the electron gun of
the High Brightness Test Stand are now discussed [2,4]. The first example is
the design of a pentode structure for a parallel beam. The four voltage
differences between the five electrode§ are required to be equal. The problem
. then reduces to solving Eq. (10) for the location of the four equally graded

accelerating electrodes with respect to the cathode.

The design used a cathode diameter of 1 - 1/8 inches (1.43 cm radius) and
an anode-cathode gap of 1.95 inches (4.95 cm) with a peak anode voltage of
1.25 MV. From Fig. 1 a 1s fouﬁd té be 3.21. Using Eq. (11) to obtain the
current density, the calculated beam current 'cmJz' is found to be 1.18 kA
as compared to the experimentally determined value of ~1.25 kA. The interval

Yo ~ 1 1s divided into four equal parts corresponding to the four accelerating



electrodes and the positions of those electrodes read from Fig. 1. With the
value of a known the actual locations of the electrodes are determined as:
cathode at z = 0, first electrode at z = 1.54 cm, 2nd electrode at 2.77 cm,

third electrode at z = 3.82 cm and anode at z = 4.85 cm.

The second example is that of a converging beam produced by a simple
diode configuration. The cathode used in this design is a concave thermionic

emitter of radius 4.46 cm. The axial anode-cathode gap 1s 15 cm and the peak

anode voltage 1s 1.25 MV.

An additional requirement was imposed on the solution of Eq. (12) for
this design; naﬁely that v' = 0 at the anode location. This requirement
would result in a convergent beam at the anode with no axfal electric field
present which presumably would be more easily transported by solenoids
downstream of the anode. This fourth condition on the solution of Eq. (12)
essentially determines a, the convergence parameter. This problem has a
solution for the non-relativistic case when the self magnetic field of the
beam 1s neglected [1]. The fully relativistic case including the self
magnetic field also may be solved and is shown in Fig. 2. A is determined
to be -.238 and a = 2.1 cm'l. The current density expected is found from
Eq. (13). Multiplication by the cathode area gives 396 amperes as the
expected diode current. The beam radius converges from an initial value at
the cathode of 4.46 cm down to .546 cm at.fhe anode. We find that r' at the
edge of the cathode 1s .625 hence the paraxial qpprox1mat1on is not well
satisfied. The diode was tested as designed with the exception that the
curvature of the cathode uas'not in accord with the requirements of the

solution to Eq. (12). Only ~200 amps could actually be transported through



the anode hole and the actual current emitted frém the cathode could not be

determined.

SUMMARY

Using the paraxial approximation enabled the derivation of a differential
equation for the applied potential in a relativistic electron gun. The
equation also incorporates the effects of the beam's own azimuthal magnetic
field. The resulting equation was considered for the case of a parallel beam
and for the case of an exponentially converging beam. When the paraxial
approximation is valid the solutions to the equation give reasonably accurate

results in terms of expected current and axial placement of electrodes.

FIGURES

Fig. 1. Solutfon to Eq. (10). vy 1s plotted vs. [2a ¢.

Fig. 2. Solution to Eq. (12) corresponding to the values used as a design
example in the text. The solution here is for the additional boundary
condition v'(Zo) = 0 which essentially determines {o and hence the
parameter a. vy vs. ¢ 1s plotted.
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